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AMECHODFCRD DGTEEAEROSWNAMIC CHARACTERISTICS 

OFTWO-AND THEEGDIMENSIORALSEAl?ES 

By H. Reese Imy, ILBemard munker, 
andiFdward W:Bowbn 

A method. is developedfor calculating the pressures on aerodynamic 
shapes at-very high supersonic speed-in dense-air with the ratio of 
specificheats equal to 1. ~Themethod is applicable -to any bodylof 
revolution at zero.angle of attack and to any two4imensionsl profile. 
The results of the present paper are campared with previous work of 
van K&m& and 3psteti.m this..problem and.the differences explained. 

Some aerodynamic chsracteristics of sever&L&apes are calculated, 
snd the lift and drag coefficients are-shown to be dependent upon the 
thickness ratio, thickness distribution, and sngle of attack. 

IR'I!RODUCTIOM 

5e possibility of .constructing airplanes andmissiles capable of 
traveling at axtremely high supersonic speeds is of ever increasing 
importance. Reference 1, for instance, ShOWB that Mach numbers of the 
order of -30 or 40 sre.ne-cessary for obtaining very long ranges with 
rockets. The:lsrgest.past of such flight paths will probably be at very 
high altitudes. The aerodynamics of flight at the-se altitudes has been 
treated by S&ger snd Tsien in references 2 and 3. The part of the 
-flight in dense air (that is, in a fluid which may be considered a co11- 
tinuum) is also of lmportsnce since the surface temperatures and air 
loads may reach very high values. The problem of .aerodynamic heating 
has been investigated.inreference 4. It is the purpose of the present 
paper to investigate the air loads encountered. 

Busemann has done much of the original work in developing a theory for 
hypersonic flows, h?ever his work on this subject is not generally lmown 
.in this country. After the present paper had been completed, Dr. Busemann 
made available to the authors a copy of his original work (reference 5). 
5e:method developed in the pre/sent paper is in substantial agreement 
with that reference. Pan Karmaa, in his Volta Congress address of 1935 
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(reference 6), referred to Rusemannrs theory but in applying the method 
imposed physically impossible conditions on the flow. Another theory 
has been presented by Qstain (reference 7); however,since he negla&d 
the pressure relief due to centrifugal force,his method is applicable 
only-to wedges and cone8. 
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SYMBOIS 

drag coefficient based on unit 

lift coefficient-based on unit 

eat3 

chord or maximum cross section 

chord 

finenese ratio 

runction .- .- 

lift 

from nose to maximum cross se&Ion 
MaxJmum thickness > 

ma88 

Mach number 

pressure coefficient 

static pressure 

dynamic pressure 

radius of body of revolution 
r 

radius of curvature 

thichesti ratio 

, 

free-stream air valocity 

CoardinatsXXee * - 

angle of attack 

angle between surface and free-stream dire&Ton 

ratio of specific haats 

density 
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8 shock-wave angle L 

pr angle between surface snd x-axis 

Subscripts: 

0 free stream; sue to form 

%b 

132 

C 

,i 

ahead of and behind shock wave 

points 0r zero pressure coefficient 

due to centrifugal force 

end point of any surface element 

2 lower surface 

L due to lift 

N normal 

8 dti. to shock 

T tangential; total due to pressure 

U upper smface 

tiOD OF AJWWSIS 

In order to calculate the pressures on bodies at hypersonic speijds 
it is necessary to determine the position of th+ nose shock wave. First 
consider two equations from the theory of shock wams. The relation 
between %he density ratio across a shock wave and the Mach number normal 
to thd shock is - 

II 
a 

% y+l 
p,=_jl+ y-1 

La 

MN2 

the relation between density ritio and the shock-wave angle e and 
deflection sngle p is 

c 

3L tan e 
Pn tan (e - B) 

b 

. 
. 
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If I$$ is very large tia be n8&.8Ct8a CXtId ti8 fO=Wfng V8Ky 

USefIiL approXdmticm for high Mach nuRIb8r flow is obtained:. 

. , 

@rz:- 7+l 
K 7-I 

For 7 = 1 

and for 7 = 1.4. 

3 -6. 
pa . 

Since B is not generally~ equai to 90r) (tan 8 # m), 
- I 

for 7=l 
'e$ (la) *: . 

and for 7 = 1.4 and slender badies 

e = Il.20 (lb) 

Thesa r8latiOnB may b8 applied Only t0 CombinatiOm Of fr9c-Btr8am 
Mach numbers and surface angles Which result in very large Mach numb&e 
normal. to the shock (surface); At the limit M = w all surface angles 
may be considered. 

Th8 shock e&tions-.have bean'.dmlo+d on th8 a&uInptiOh of an 
Irrevemibla adiabatic process (no heat transfer except-that occurring 
Within thd shock wave it88lf).. @et&n (reference 7) points out- that 
the compres~lion at vary high Mach numb~ra~reaults in extrmely high 
temperattiad which in turn c&us8 lerg8 heat-lossds dua to radiation and 
conduction. These hbat 10~~8s limit the temperature rise to a value much 
lower than that detamined by the adiabatic law. A bat-tar approximation 
to the shock equations at hy-peraonic speeds &y possibly ba obtained by 
U88 ofthe asmmption that 7 = 1 in tha praceding equations. Aqua- 
tions (1) 8hoW'tha.t the r8&t6 are not critically affected by the value 
chosen for 7; h8nC8,' for simplicity, th8 calculations in this paper Will 
be baaed on the relation 7 = 1. 

Eqmtiom (1) indfcatmthat at very high mpzrsonic Mach number8 
the shock WZLVd follaTs the surfacq. Since the flow 1s supeyspnic tha 
aLr ahead of the shock Wave is not affected by the body, and hctncs tha 
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F&M the following figwe 1t is appazmnt that tha mass flow (pzr 
unit area) through tha shock wave is 

I 

. . 

, 

. . FFgure I,- Velucftiea near a shock wave. 

Sines b--+0 it follow6 th8t 
% 

Equating momentamb~fora and aBar the shock in a tangential 
dfrection gLv-es 
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At very high Mach numb&s with 7 = 1 the region of disturbed flow 
i8 confined.to an itiiIlit8&Bl&. layer between th8 STU'fac8 and the ahock 
wave. Since the cross section of this disturbed lay8r ie very muall and 
ths density ia'V83Zy 3Zg8, the acceleration in the direction of flow is 
negligible. Hence the assumption is-made that the 8p88d Of a given ItBe8 
of the fluid-mmaine comtmt along the mrface at the value yo cps P. 
This aesumption 18 the 8ame a8 that IIBd8 by &188man11 and von &man. A 
sketch of the velocitI8s over a surface is given in figure 2. 

- 

Figure 2.- V8locities over a mrface. 

Ike drag of the body is found from the Z&8 of change of the 
momentum of the air in the stream direction. The air mam per unit time 
entering an elemental mea of shock for a body of-revolution at zero 
angle of attack is 

and th8 cha;ng8 in velocity in the etream direction frm the time the 
818mental mass enterfl the shock at p until it leave8 the mrface being 
considered at PI 18 

2nrpouo dr 

VO - u. COB p COB p1 
. -.. 5 

Th8 drag is then 
l 

. 

D= 
J 

rl 
23wQ&J, 1 (4) 4 

0 b' . _. -- 
. 

;rC 
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tiQr8 CO8 p is a kn0171l function of .r, and pl COZTespOnds t0 the 
. surfac8 a;ngl8 at the point rl where the flow diVerg88 from the SlWfaC8. 

The location of rl will-b8 d8t?+nQd later in the ana&vSiS. Equation (4) 
differ8 f&m that given-by von&rman inasmuch as he assuJnes that the 
flow 18aV88 the surf&c8 in the free--stream direction (@I = 0, rl = rmax). 
This assumptipn'would require surface pressures less th& absolute zero , 
aIId iS therefore not PhySiCtily justified. For a twc+dimensional body 
the 8hIfl0nt~ Illa88 is poUo dy asld th8 dra@; for One SUI’faC8 b8COIll88 

. 
, - 

D= PoUo2(1 - CO8 p CO8 lq dy (5) 

For a cone p remains constent at the 883318 value as PI. ThQIl th8 
drag of a cone at z8ro angle of attack sdmplifies to 

%l8.X 
D = 23-l f 

porUo2(1 - cos2pl) dr 
1. ) - 9 .‘I 

- '0 

=7tT max2Pouo2sin2pl 6) 

or . 

CD = 2 sin2pl,. (73 

Equation (6) is identical tith Epstein's result (reference 7). Since 
Epstein neglected the 8ffQCt Of the pr8SSUr8 drop due to surface 
curvature, his method would be expected to be in agreement with the 
present work only for Straight-&d8 bodies. 

f - The press?8 coefficient behind a shock wave is frequantly giv5n as 

Pq 2 sin p sin 8 
CO8 (e I p) 

(8) 

Equations (1) end (8) combine to give the pressure coefficient behind a' 
shock at hypersonic Sp88dS 

(9) P= 2 sin2p 
. . . 
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. 
. A cmparlson of equation-s (7) and (9) Indicates that,-for 7 = 1, 

tw~orthre8+mllensiona3bodd8ethathave no S3Ll??fac8 cLmvature inthe 
stream direction have the seme pressure on the surface a.8 behind the 
leading shock. When the flow IS curved in th8'6tZ8m dir8CtiOn, tih8 
diffarenca in pressur8~fram the- shock wave to the surface equals the 
C8Iltl?ifU@ fOI'c8 dU8 tV the CTatLlr8 Of-the flOW: 'Ehe pr88SIWe COeffi- 
cient behind the-shock d&pends'o&the surface- slope, pd the prymure . 
relief--due :to curvature~depends on tb.8 local air m&Be, valocity, and 
radius of curvature? The maximum curvature that the flow can have for 
a giV8n shock pressure, mass, and Velocity OCCUTS when .the =8ElBlD?8 On 
the airfoil side of th8 flow drops to zero. If a pressure Still lower . 
is needed to-turn the flow sufficiently tc fcU.ow the airfoil or body 
surfac8, it is physically impossible for the flow to follow the surface 
end it effectively "sepsxate8." For the very high dynamic pressures 
QnCOUIlt8r8d at-.hyperSOnic sp8edS the prQSSllT8 CO8ffiCient P cOIT8spondi~ 
to zero pressure can be considered as zero. It-follow+ thatth8 ~l3&!x 
of integration rl a;nd yl Of 8qRBtiOZlS (4) and (5) COIT8SpOZd t0 t&8 
points where th8 surfac8 pressure cof3ffic~6Iyits go to zero. T!b.u, in 
Order to detm-mine the limits of Integration for the drag intsgral it is 
neceseexy to know the local pressure co8fficisn-t. . -. r 

If in equation (5) the subscripts 1 axe replaced by i where 
the subscript 1 corr8sponda to the end point Of any el8ment, the 
8X-JW8SSiOI-I will giV8 the drag for the part of the body ahead of the 
point (xi,~i 1 __ 

I 
- , 

Di .= poUo2 
s 

oyl (l- COB B co* Pi) as 

ti term8 of drag coefficient based on unit chord 

s 

pi 
CD1 =,2. (1 - o. COB p CO6 pi) *. 

Th8 S&&C8 ~8SSIITe~co~8ffiCi8nt at the 2oiQ-t (Xi,yi) 15 then 

dCDi 
Pi = - 

Qi 
-. 

Pi = 
ap, 

2 sin2pi '+ 2 sin j31 ayi 
f 

YJ 
COB P as 

0 

(10) * 

(lla> 

- 

. 

L 

I 
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c 

L 

and for xi2 XT ,. . __ 
. 

9 

Pi =-0 (=b) 

SiqUarly, for a three-dimensional body of revolution the elemental 
dl%& Coefficient based On the maXiIllUDl CFOBS SeCtlQn of the COZ@et8 body 
is 

16S 
I 

cDi = s r(l - COB p COB pi) &r 
0 

and on the surface 

2 dn Pi @%, 
s 

ri 
Pi = 2 dn:pi + - r co8 .T 

.d. *i 0 
p dr (=a) 

and for x12x1 

Pi = 0 

where the fineness ratio % = 1 CroBR sectioq 
-tiimum thickness 

Tbev-alueof y~=yl(orri = q) is determined by equating the 
pressure coefficient to zero. This is the proper value to be used in 
evaluating the total drag integral_. (See epuatfons (4) and (5).) The flow 
separates from the surface 5-t the pain! (x~,yl) and i& bounded by a 
zero-p~3rJstme'streamline. Any b$y within th3s dero-greseure region 
contributes no drag. . 

In equations (lla) and (Ea) the first term ie the pressure coeffF- 
chant behind the shock and the second term is the pressure coafficient due 
to centrifugal force. .:. '. 
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A good approximatiqn to thesurface pressure coefficig& for @endg~ . l - 
profiles may ba otjtained in a simple m?r. tit. y = f(x) be -&I+. shape 
of the body or airfoil then -: 

d2s - = f"(X) 
d=i? .I 

. 
The preeeure coefficient behind the shock (equation (9)) beccanas 

\ 

P,= 5?12...Y . 
- 

1'+ ,I5~.:.-.. 

If' the velocity is not cwed appreciably by the shock (true only for 
slender bodies or aitioils), the pressure drop due to centr~fugill. . . for-3 1s ' -. .- .: r. 

mTJo2 2.qy " - ( _ : 
(Ap), = - = - 

R R 

or - 

whera. the rafiius. of cu&&imr--.... _: : _ : _ _ _-. _ . :.- .--. L -------'; _ : ,.-- 

- 

-- 
/ 

* , 

-- - 

: P = ~P,-.+,.p, '. .,I.-. : .__-_ .._ _ : :. I I .. . vi 
2f'2 2ffIf . .._ .-. -.-. -.. .: 

= It + (1 + ff2)3i2 
& 

. 
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* . Since- f'2 ie small compared with-l, the presstie.'coefficient on a 
slender airfoil may be taken as 

P= 2(f.'2 + ff'l) (13) 
I 

., For a three-dimensional body the air mass over each surface element 
is 

pouod PO' .A 
2lTruo =- 2 

. 
By similar reasoning the presmre-coefficient for slender, three- 
dimensional bodies may be approximated as _ _ 

P=2f'2+ff" (14) 

. The lift of a body or airfoil results from the downward momentum 
: Imparted to the air stream. The same considerations used in determining 

the drag from the horJz.ontal momen- apply to the c+lculation of lift 
. t from the vertidal momentti. The lift for the upper eurface of a two-. . . dImensional airfoil is then.of the form * 

L = -pouo2sin p1 71 
s COB P as (15 1 

0 

where yl is the point where the eurface pressure becomes negligible. 

&iICp;TION OF TEEORY 

Lift and drag of a flat plate-.- Equation (9) can be used as the 
basis for calculating the-lift of straight--8urface airfoils. The lift. 
coefficient of a flat plate at a small angle of attack can be written a8 

cL = Pz -Pu 
\ 

Since the action pressures are negligible~in cqparison with the 
presme rises 

. 
b 
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and 

CD = cLa = ih3 

NACA TN NO. 1613 

. 

Lift and drag of wedge airfoil.- The lift of a single-wedge airfoil 
is eaxy obtained by the s&me method used .in the preceding section. For 
angles of attack a less than the semi-nose angle 

CL.= Pt -Pu 

CL = 4-P + d2- (P -a,q 

CL = -8Pa = 4ta 
and 

(16) 

dOr, -= 8p = 4t da 

The drag coefficient of a singl~edge 
attack. 'CG which Is less than the -semi~se 

cDf= 2ke + a)3 + (j3 - 

= 483 + 12pa2 

airfoil at an angle Qf 
ELngleb . . - . 

This cart be broken into & fom drag CD0 anil. a drag due to lift 
%L 1 

CD, = 4p3= g ._ 
* 

%= 
12pa? (17) 

The combination of equations (16) and (X7) gives %he SoUaring expression 
for drag due to lift for this airfoil: 

Y 
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. 
. For &ngles of attack l&xger than P, the lift and drag of the wedge and 

flat plate are the same for the s&me slopes of the lower &urfaces. 

Lift, drag. and pressure on a two4imensional pasabolic-erc airfoil.- --- --_. 
FLW?.U equation (5) the drag coefficient for a symmetrical twtiimensional 
airfoil of unit chord may be expreesed as 

CD = 4 ftY1 (1 - CO8 P CO& Pl) as 
0 s 

For the parabolic airfoil defined by y = +tx(l - 5) where t is the - 
thickness ratio, the drag coefficient becomes 

it 
CD = 2tx1(2 - Xl) + ; 1 - 1 + t2(1 

,i 7 - Xl) I 
W3) 

The value of xl for which the pressure coefficient is zero is fo-md 
to be 

Substitution of xl in equation (18) gives the following equation for 
drag coaffici8nt: 

cD=2t- $kl + tg)1'3 - l] 

or for simplicity of numerical calculations it may be expressad in a 
series as . 

24 C+=~l+2+...) 
( 

. 

. 
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!T!he pre-&@re coefffient on the &urface of the afrPOf.1 at any point 
if3 found from equations (Xl). Then, for xi I-X-J, 

(Xi,Yf) 

ii-3 

c 1 + t2(1 - XII2 I 
312 

i 

P 0 = 

or, approximately, 

P= t2~(1-xi)2-1] (1+~~)~-1~(1-x~)~ +, . . 
I 

. 

The pressure coefficient found by the approxtite method (equ&.ticm (13)) 
is, for xi <=x1, 

P= t2b(1 - x1J2 r I] 

The agreement of the pressure coefficients found by the&s two 
me5hods is very good a& can be &een in figure 3(a) where the presezre 
coefficients on the surface as well && the pressure behind the &hock 
&ze given for a parabolicc airfoil of I+icti&s ratio equal to 0.10. 

The lift coefficient (bassd on a unit chord) is found fYom 
equation (i.5) to be 

T2 y1 
CL = 2 &in j32 

r 
co8 p dy + 2 sin Pl 

s 
coil- p dy 

0 0 

x2 : Xl 
= 2 sin P2 J &in j3 dx + 2 sin Pl s sin I3 fix 

0 0 

. 



NACA TN No. 1613 . . 

. 
l . where (q,yl) and (~2~~2) are the points of flow sep&xaticm ox the 

upper and Mwer &urface&, respectively, and j3 is the angle beimeen ths 
airfoil surface anll strsml direction. II& $=p - a for tha upper 
aurfacemd @= P + a for the lower &w-face where $4 38 th* mg3.e 
betwsen the airpoil surface and the x-ejcis. Then for mmll ax@es 

For the symaetric&.l pabolic airfoil defined by y = tx(l-5) ths 1wt 
coefficient based on a unit chord is found to be 

- t2x13 C - 3-tx12(t - a) + 2X1(-t - aI2 I (19 > 
. 

The pre&&ure coefficients for the upper and lower &urfaces are found 
from equations (ll). Setting the pressure coefficients found froan 
equation& (XL) equal to zero permits the determination of the vskm3 
of Xl and %I 

Pu = 2 2 3t Xl - 6txl(t - a> + 2(-t - cd2 = o 

p2 = 3t2+2 - 6txrJt + a) + 2(t + cd2 = 0 

The lift is then found by sub&tituting these values of xl and + 
into equation (19). For a <t 

m J-b + a)3 _ (t - aI3 CL = 9 
i t t 1 

or for t S;OL St ( > l+fi 2 

w 

243 (t + a)3 
\ cL = 9 [ 1 t . 
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, - 

a2-t; 1 or for _ 
( ) 2 

CL’@- 3t(t + a> + 2(t + cd2 

The pressure distribution--for a ten-p&W&-thick parabolic airfoil 
is shown in figure 3(b) for a = 0.05 radian. If a is larger than the 
semi-slose angle, the effect of the upper surface on the total lift is 
zero since suction pressures axe neglected. 

bag and pressure on a parabolic body of revolution.- The drag of a 
parabolfc body of revolution at zero angle of attack may be determined by 
the same method used for the two-dimensional bodies: -Let the surfaca be 
described by the equation 

rEg(1-g) 

. 

. 
-. 

where F is the fineness ratio of the body. Ths expression for drag 
coefficient is then 1 * . 

'= 16F2 
Ja 

CD J (1 - cos j3 COB Pl)r dr 
0 .- 

which reduces to 

CD = 2x12(2 -x1)2 4- (1 - x1)2 
F2 '. 2 '",: -'I 

where xl is agaIn the point of zero pressure coefficient.. 

The-emression for CD expanded in a series is 

CD = L$ 1 + 3(1 -x122 - 9(1 -x114 + 50 - XlF 
[ I 

+ 4(1- ~1)~ + 18(1 - xl14 -.60(1- xlj6 +- 350 - 
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The surfac3 pressure coefficient found from equation (12) is, for xi sxl, 

and, for 

m- 

PSO 

or as a series, for xi s xl, 

P= 1 
12x+ - Xi> 

- 6(1 - xi12 + 5(1 - xi14 1 

+ 1 
.A 

1 + g(1 - x1)2 - 45(1 - XII4 + 35(1 - x1+ + .*a 

' > 
(20) 

I 

I 

By use of the approximation given by equation (14) the pressure coefficient 
may also be expressed, for xi2 xl, as 

P = 1 
3-C 

5x12 -1oxi + 4 > 
I,L.r --3 $['.5 

The pressure distribution over a parabolic body of revolution of fine- 
ness ratio equ&l to 10 as determined by equation (20) is plotted in 
figure 4. The value of the pressure distribution as detsrmined by the 
approximate method (equa.tion (21)) is also plotted in figure 4 together 
with the prassure behind the shock. 

. 
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-. CONCLUDING RZMARKS 

R&A TN No. 1-613 . - 

A method for calculating the aerodynamic characteristics of twc- 
and thr33-dim3n3ion&L shapes at hypersonic speeds in dense air has baen 
developed; The results-of the present paper are in substantial aweement- 
with scme earlier work of Busemanc but differ from the remiLt8 of van K&m& 
and Epstein. Von K&m&, in his application of Bus ema&smethod,has 
assumed that the flow leaves the surface parallel to the free stream. 
This assumption would require surface pressures less than absolute zero. 
Epstein neglected the pressure relief due to centrifugal force and there-- 
fore his results apply only to bodies with zero curvature. 

The method of the present paper has been applied to several simple 
shapes and compared with other calculations. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., February 3, 1948 

RlZEEENCES 

1. Ivey, H. Reese, Bowen, .mward N., Jr., and Oborny, Lester F.: 
Introduction to the Problem of RocketGowered Aircraft Performanc-e. 
RACA TN No. 1401, 1947. 

2. Siihger, Eugen: Gas Kinetics of Very High Flying Speeds. Rep. no; 369, 
Douglas Aircraft Co., Inc., June 5, 1946. (Eraa Caskinetik sehr 
hoher Fluggeschwindigkeiten. 
(Braunschweig), May 2, 1938.) 

FB Rr. 972, Deutsche Duftfehrtforschung 

3. Tsien, HsueShen: Superaerodynamics, Mechanics of Rarefied Gases. 
Jour. Aero. Sci., vol. 13, no. 12,'Dec. 1946, pp. 653-664. 

4. Wood, George f.: Calculation of Surfece Temperatures in Steady 
SLpsrsonic Flight. KUA TN No. lll4, 1946. 

5. Busemann, A.: Fl&Qkeits- und Casbewegung.. Handw&terbuch dar 
Naturwiseenschaften, Zweite Auflage (Gustav Fischer, Jena), 
1933, PP~ 27!%277. 

6. Von ~&m&n, oh.: The Problem of Resistance in CompressiblcJ Fluids. 
R. Accad. B'Italia, cl. sci. fis.,'mat. e nat., vol. XIV, 1336, 
PP. 1744. (GAIiCIT Pub. No. 75, 1936.) 

7. Epstein, Paul S.: On the Air Resistance of Rroj3ctilvs. Proc. Nat. 
Acad. Sci., vol. 17, no. 9, Septy1931, pp. 532+47. 

8 

. 

. 



.02a 

.a6 

(a) a = 0 radian; % = 0.00066. 

Plgure 3.- Preaaurs dlstrlbutlon over &mraboklo alirfoll. Thlcknsss Htlo, 0.10. 
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x, rrrctions or cbnrd 

(b)O[ = 0.05 mdlq err, = 0.Ol25. 

?QuIu 3.- a0n01mlell. 
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a. -. 
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b’ I . - -. 

On aurf’ace (approx. method) 

.004- 

x, fractions of chord 

Figure 4.- Pressure distribution over parabollo body of revolution. Fineness ratio, 10; a = o radian. # 

CD = o.ool+2. 


